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Abstract:

A micromachined deformable mrror wth pixelated electrostatic
actuators is proposed. The paper begins with a physical description of
the proposed nmirror. Then a mathenatical nodel in the formof a nonlinear
partial differential equation describing the mirror surface deformations
is derived. This nodel is used to derive the required voltages for the
actuators to achieve a specified static deformation of the mrror
surface. This is followed by the derivation of a static nonlinear
f eedback controller for achieving noninteracting actuation. Then the
structure for a conplete control system for wavefront correction is
proposed.  The paper concludes with a discussion of the physical
i mpl ementation of the proposed control system

1. 1 NTRODUCTI ON

In the devel opment of |arge space interferometers and nulti-aperture
reflectors, deformable mrrors are used to conpensate for distortions in
elements of the optical train and/or in the instrunent’s field of view
Such mrrors should be small and Iightweight. Mreover, they should be
hi ghly pixelated so that the defornations can be controlled with high
lateral resolution.

The first actively controlled deformable mirrors were devel oped by
NASA in the 1960's for use as solar collectors or as ground-based
tel escopes [11. Since then, there has been extensive devel opnent in this
area. Conprehensive surveys of works on actively controlled deformable
mrrors were given by Ealey [2] and Tyson [3]. In 1977, Grosso and Yellin
[4] devel oped a nmenbrane mrror whose deformations are controlled by
means of discrete electrostatic actuators. Subsequently, various forms of
deformable mrrors with discrete piezoelectric and magnetostrictive
actuators were also devel oped [51-[91. The advent of silicon VLSI
technol ogy has nade possible the integration of deformable mirrors with
mcroel ectronic circuitry. 1In 1983, Hornbeck [10] perfected a deformable
mrror device with pixelated mirror elenents whose size is 51 um Square.
The mrror deformations are controlled by electrostatic actuators driven
by mcroelectronic circuits which are integrated wth the mrror
assenbly. H's mrror was used primarily as a light modul ator. Later, in
1989, a wavefront control device with a deformable mirror integrated with
control and sensor units was introduced by Ealey and \Weeler [111. In
their device, the actuators are spaced 1.0 nm apart. The voltages applied
to the actuators are on the order of 200 volts. Recently, efforts have
been initiated at the Jet Propul sion Laboratory in exploiting micro-
machi ning technology to develop deformable mrrors with the afore-
nmentioned characteristics and with pixelated el ectrostatic actuators
whi ch are spaced less than 25 microns apart. In this paper, attention is

focused on the analytical design of control systens for such deformable



mrrors.

The paper begins with a physical description of the proposed mrror.
Then a mathenatical nobdel in the formof a nonlinear partial differential
equation describing the mrror surface deformations is derived. This
equation is used to derive the required actuator voltages to achieve a
specified static deformation of the mirror surface. This is followed by
the derivation of a static nonlinear feedback controller for achieving
noninteracting actuation. Then the structure for a conplete control
system for wavefront correction is proposed. The paper concludes with a
di scussion of the physical inplenmentation of the proposed control system

2. PHYSI CAL DESCRI PTI ON CF DEFORVABLE M RROR

Figures 1 and 2 show respectively the sketches of the top and side
views of the proposed deformable mirror with pixelated capacitive
actuators. The mrror may be realized as “flip chip"-type assenblies
consisting of two matched m cromachined silicon structures nounted
face-to-face and fused together along their peripheries. The key el ements
of the mrror consist of sinple, easily replicated, electrostatic |inear
actuators, each responsible for pulling on a small portion of a thin
flexible silicon nenbrane which is the substrate for the defornmable
mrror. The mrror surface is forned by depositing a netallic or
multi-layer dielectric film on the nembrane. The nenbrane with posts (See
Fig.2) i s micromachined from a silicon sheet. The posts serve as supports
for the menmbrane and also as halves of the electrostatic actuators. The
bottom half of the mrror assenbly consists of a set of posts with four
silicon bl ades attached to each post. These bl ades serve as |eaf springs
for supporting the posts of the upper mrror assenbly, and for providing
a restoring force for the actuation system This bottom assenbly is
micromachined from a silicon wafer. The electrostatic actuators are
formed by attaching conductive pads to the upper posts and the bottom
half of the mrror assembly. The electronic element access, electronic
actuator drivers, and possibly the feedback controller circuitry may be
monolithically integrated into the mrror assenbly.

W note that the geonetric structure of the deformable mrror proposed
here differs fromthat of Hornbeck [10]. In his mrror, each actuator,
when activated, produces a concave deformation of the mirror surface over
the entire pixel. This causes focusing of the incomng light beamin
front of the pixel. Here, each actuator pulls down on the mrror surface
at a post area and thereby induces deformation over adjacent portions of
the mrror surface. Except for the flat spots over the post areas, the
overal | shape of the mrror surface is determned by the displacements of
all the actuators.

The initial performance goals for the proposed mrror will be the
control of a 32 x 32 pixel flat mrror with 10 nm accuracy. Once these
goal s have been achieved, efforts will be directed at extending the
nunber of pixels/control elenents until 10 nm accuracy can be achieved
over a 1024 x 1024 pixel surface.

3. MATHEMATI CAL MODEL

Let Q be an open connected subset of the Euclidean plane RRwith a
plecewise snooth boundary 8Q representing the spatial domain of the
mrror. W introduce a nmesh on Q whose nmesh points are denoted by X =

(le’XZn ), me,.1., M n= ,...N. For a rectangular mrror, Q is



speci fied by Q = ((x1’ xz) e R: |x1| =< 81, |x2| =< Ez), where the el’s
are specified lengths. For a circular mrror, Q is specified by the disk

Q = {(r,8), O=r1 =r, O= O =2n}). A each nesh point X oowe

[}
i ntroduce a patch Q, a bounded open subset of Q representing the
effective spatial domain of the (m,n)-th actuator force containing x as
mn

an interior point. Typical meshes and patches for the rectangul ar and
circular mrrors are shown in Fig.3.

Let the mirror surface be a thin nenbrane with density p = p(x) being
a specified positive piecewise snpooth function satisfying the follow ng
bounds:

0<p,  Spx)=p <+ for all x e Q. (1)
The variation of the mass density due to the supporting posts can be
included in p by setting p(x) = P (a known constant) for x e Q.

Let i, = 1,2 denote the conmponents of the symmetric stress

o
i)
tensor in the mirror surface satisfying the positivity condition

2 2
2 2 _ 2
c, lgn® = z Z"Ugag, = c IEN° for all € = (£,€) €R", (2)
151 §=1 :
wher e Cy and c,are known positive constants. In the special case wth

uniformtension T, we have crU = TSU, wher e 611 denotes the Kronecker
del ta.

The downward displacenent u(t,x) normal to the mrror surface at a
point x e Q and time t = O can be described by the foll owi ng equation:

& o
) W["u"" W] =1 (3)
1 j= i J

where f = f(t,x) is the surface force density whose explicit formw Il be
derived later. Assuming that the mrror is rigidly attached to its
boundary 8Q, u nmust satisfy the boundary condition

azu 2
p(x) > z
ot 1=

u(t,x) = Ofor x edQ and t = O (4)

Finally, the initial conditions for u are specified by

— du —
u(0,x) = u (x), —w(t,x) = u (x) for x eQ. (5)
To derive an explicit expression for the surface force density f, we
first consider the electrostatic force density over a patch @ due to a
mn
specified vol tage v (L) applied to the (m,n)-th actuator. W assume that
the mirror surface curvature is small so that each patch Q is
mn

essentially parallel to the bottom assenbly. Thus each actuator’s
conductive surfaces can be regarded as naking up a parallel-plate
capacitor. Neglecting fringing effects of the electric field at the
boundary of an, the electrostatic force density is given by



.oov (1)
fe(t, X) = ie mg‘ —

2
2 € T ull x) ] for all x € Q (6)
mn

n

where D is the distance between the undeformed mrror surface and the
bottom plane and € is the permittivity of free space. Wen D »

Iu(t,xmn)l, (6) can be approxi mated by
1

2 8o
Consi dering each leaf spring as a snmall cantilever beam having uniform

cross section with moment of inertia | and Young's nmodulus E, the force
density fs due to four leaf springs over the patch an is given by

f(t,x) = vZ (t)/D° for all x € Q_ . (6 )
[ mn mn

£ (x) = 2EL y(,x ) for all x eq (7)
s 3 mn m

L&A "

mn mn

wher e Amn denotes the area of the patch Q. Here, we have neglected the
inertial effects of the |eaf springs.

Let ¢mn denote the spatial weighting function associated with the
(m,n)-th actuator such that qsmn(x) = Ofor X € Q - (Q U8 ),

Conbining (6) and (7), equation (3) becones a nonlinear partial
differential equation given by

2 2 2
p(x) = v [cr (%) —]
6t2 ‘1251 jZ‘l x1 1) axj
M N
vV o (t) 2
1 12E1
=1 2{780{ D= ult, %) ] - —ult, x )¢ (x). (8)
_ ' “mn I} A mn, mn
m=1n=1 mn mn

Let K(x,x',t,r) denote the Green' s function corresponding to the
solution of the linear equation:

azu 2
px) -
at? iZ
with boundary and initial conditions given by (4) and (5), where &

denotes the Dirac delta function at t = v and x = x’. Equation (8) can bhe
refornulated as a nonlinear integral equation:

2
8 8u _ _ )
Zl -x—l(0”(x) ~a~)—(—;] = 8(t-1,x - x'), (9)

u(t,x) ° I K(x,x’,t,0)u (x) dx* + —g{—(x,x’ , £,0)u’ (x°) dx’
o) 0 Q ()
M N
t v (t) 2
, 1 mn ] _ 12E1 , ,
+f J K(x,x',t,T) z Z{HZ eo[ 5= u(t,x ) 3 u(ltm.\x} ) #'Jnn(x )dx
0" Q . mn L~ A
m=1n=1 mn mn

(lo)
Under the assunption that the mirror deformations over flznn are

sufficiently small conpared to D so that (6) may be approxi mated by (6’ ),
equations (8) and (10) becone linear. This assunption nay not be
justified when Dis made small so as to reduce the operating voltage




| evel s of the actuators. For exanple, in Hornbeck's deformable mrror, D
is 620 nm and the peak mrror deformation for normal operation is around
100 nm Evidently, (6') is not a good approximat.ion for this case.
4. STATI C SHAPE CONTROL

Let. u, = ud(x) be the desired static shape of the mrror surface

defined over the entire spatial domain Q. It is required to determine the
static voltages an for each actuator to achieve the desired shape u, -
Let Ks= Ks(x.x’) denote the Green’'s function associated with the
boundary-val ue problem

2 2

8 a ,
z Z K[o”(x)—é—i—] = 8(x - x'), xe€QqQ, (11)
1=1 j=1 i J
w th boundary condition
u(x) = 0 for x € 0. (12)

Then, the static equation corresponding to (8) can be refornulated as
an integral equation for the mrror displacement u corresponding to given

static actuator voltages Vmé

H N
\' 2
_ . 1 mn _ 12EI VYo
U(X) B J‘QKS(X,X ) z Z{?co[ D - U(an) ) 3 u(xmn)} ¢mn(x )dx '

L A
m=1n=1 mn mn
for x € Q. (13)
_ T =k _ ,ck
) Let u‘k— (u(xll‘)(. .T. .,u(xlN),...,u(xm),...,u(xw)) and v© = (Vu""’
Vo e,V oo, Vo), k= 1,2, Setting x = x in (13) leads to a set of
1N M1 MN

13
M x N al gebraic equations relating u and V2 These equations can be
witten as

(1 + Ku = P(wV?, (14)

where | denotes the MN x MN identity matrix; K is the MN x MN matrix
whose k-th row Kk is given by

— i) 1§ 1) 13y &+ — -
Kk = (Ku’ C e, Km' . "Km"" ,KHN), i = integer(k/M), | = k Md(M, (15)
wher e
b , ') ax _12EL
K- = {JQKS(XU’X ) ¢mn(x ) dx 5 . (16)
mn mn mn
P(u) is the M\ x MN matrix whose k-th rowis (p:f(u). o .,pii(u) :
Py, ..., pl(w)), where
1) &
p “(u) = ° U K(x ,x) ¢ (xX)dx’,
mn Z(D- u(x ))2 Q s 1] mn }
mn

mn

I = integer(k/M), ] = k Md(M. (17)




Explicit expressions for K and p:"{ corresponding to rectangul ar and
circular mrrors are given in the Appendi X.

If we set u=u =f\ud(x“ P € M .,ud(xm),...,ud(xHN))1,
then (14) becones a set of Mx N linear algebraic equations for the
unknown actuator voltages V. Evidently, if P(u_) is nonsingular, then v°
is uniquely determned by

¥ = Pu)THI + K. (18)

The matrix P(ud) is nonsingular if and only if its rows are linearly
i ndependent, or equivalently the Mx N matrices given by

iJ “ “ ° ij
A pll(ud) plN(ud)

PU(ud) = Z. , =10 5=1,. . N (19)

i.’ “ o lj
pm(ud)’ puu(ud)

are linearly independent. Since %:\J depends on the desired mrror surface
di spl acenent u, the set D of all displacenents u, such that P(u ) S

nonsingular corresponds to the set of all mrror surface displacenents
whi ch have one-to-one correspondence with the actuator voltages V. In

fact, if we define the nonlinear mapping u N(u) by N(u)=P(u) " (I+ K)u,
then Nis an invertible mapping with domain D. In the case where the
desired mrror surface deformation u,= ud(x) has spatial symetry, the

nunber of equations in (14) can be reduced accordingly.

Now, given a set of actuator voltages V, the corresponding mrror
surface displacements at the mesh points X . can be determ ned by sol ving

the nonlinear equation (14) for u. If we define the nonlinear mapping
u K (V¥)u by N (V®)u=P(u)V?- Ku, then the sol utions correspond to the
fixed points of N(V). In physical situations where the actuator voltages

satisfy a magnitude constraint of the form V2 < V2

mn
o2

ma<x co, the set of all

admissible V's is given by V = {VeR"":an = \7:“, m=1,...,M, n =
l,...,N} (a hypercube in R""). Then the set of all admi ssible us i's
given by NI (V).

Remar ks:

(R1) Once the required actuator voltages an for achieving the

desired static mrror surface displacenments at the nesh points are
determned, the mrror surface displacements at other points in the
spatial domain Q can be found using (13) with u(xmn) set to ud(xmn).

(R-2) In all the existing works on deformable mrrors, it is
assuned that the static mrror surface displacenents at the mesh points
x ~are related to the actuator inputs by a linear transformation

comonly called the influence function matrix which is valid for small




di spl acenents. For large nirror_ displacenents, the relation between
U(XU) and the actuator voltages an is given by (13) with x set. to XU.

This relation is inplicit and nonlinear. In the special case of small
di spl acenents such that approximtion (6) holds, this relation becones
linear. Using (13) with a single actuator at Q 10 obtain u(x) in terms

of \7mn gives the usual influence function.
(R-3) If the nunber of actuators is less than the nunber of nesh
points at which the desired nmirror displacenents are specified, then,

under the 1 inear approxinmation (6'), (14) consists of a set_ of
overdeterm ned linear algebraic equations for the unknown variables V .

W may use the |east-squares solution, which corresponds to obtaining the
pseudo-inverse of the influence function matrix [3].

Noninteracting Actuation:

Due to stress in the nenbrane, the voltage an applied to the (m,n)-th

actuator will influence the nenbrane displacenents at all the patch
| ocations. To sinmplify the mirror deformation control, it is desirable to
i ntroduce appropriate feedback and new control variables o such that

c only influences the mirror displacement u at the mesh point X, and

'™

u{x ) only depends on c¢ . Thus, the new controls c produce
mn mn mn

noni nteracting actuation of the mrror surface displacements at the nesh
points. To achjeve noninteraction, we introduce a static feedback control
of the formvV® = F(c - u), where Fis a feedback gain matrix which nmay
depend on u. Thus, in view of (14), we have

(I + K)u = P(u)F(c-u, (20)
or
[1+ (1 + K) 'P(u)Flu = (1 + K)"'P(u)Fc, (21)
where C = (C..s+e-sC, 4eveesCl yer.,C )T.  To achieve noninteracting
11 1N M1 MN

actuation, we seek an MN x MN matrix F such that (I + K) 'P(WF = A a
specified constant diagonal matrix with nonzero diagonal elenents AL
Thus, u and c are related by a diagonal matrix operator given by

u=[1+ A Ac, (22)
and the required feedback gain matrix F is given by

F =P ™ (I + KA. (23)

In physical ternms, the static feedback control in effect cancels the
spring coupling forces to produce noninteracting actuation with respect
to the new control c¢c. In the special case where the nmirror displacenents
are small as conpared to the actuator gap D so that approximation (6" ) is
valid, P becomes a constant matrix. Consequently, F is also a constant
matrix and the noninteracting controller is linear. W note that P(u) and
K depend on the paraneters E, |, D, and £mn whose values can be

accurately estimated. Therefore F can be determined with good accuracy.
Finally, the foregoing noninteracting controller is also valid for the



dynanmi c case, since the couplings between the mrror displacenents at the
mesh points involve elastic forces only.

5. DYNAM C SHAPE CONTROL

Assumi ng that the desired nom nal static-shape u, for the mrror is
attai nabl e by appropriate choices of the actuator voltages \7mn, it is of
interest to control the deviations of the mrror shape about. u, for

wavefront correction. We propose to achieve this objective in three
steps. Figure 4 shows the proposed structure of the overall control
system for wavefront correction. First, a static feedback controller for
achieving the desired nomnal static mirror-shape and noninteracting
actuation of the deformable mirror is introduced. The function of the
m nor-1oop feedback controller is to nodify the dynamc response of the
actuators. This nodification can also be perforned ahead of the static
f eedback controller depending on the nethod of inplenentation. Finally, a
gl obal feedback controller which makes use of the output of the wavefront
estimator to generate the appropriate actuating signals for wavefront
correction is introduced. The static feedback controller has already been
di scussed in Sec.4. In what follows, the discussion will be devoted to
the nodification of the dynam c response of the actuator, and the gl obal
shape controller for wavefront correction.

5.1 Actuator Dynamics Codification

The main objective here is to nodify the dynanmics of the actuator to
ensure satisfactory response to input commands. Since this controller is
to be integrated with the mrror assenbly, the control |aw should have
the followi ng properties:

(i) It should be sufficiently sinple so that it can be realized by
m croelectronic circuitry which can be integrated nmonolithically with the
mrror mcrostructure.

(ii) It should be nodel independent so that it is unnecessary to
identify the system parameters for their inplenentation.

(iii) Its performance should be sufficiently robust with respect to
system paraneter variations.

Since the mirror surface has very little internal danping, the actuator
forces may induce undesirable surface vibrations. Therefore, it is
necessary to introduce danping externally. A possible approach is to
i ntroduce external passive danping. This may be achieved by housing the
bottom mirror assenmbly in an enclosure which contains air, and has minute

holes for air passage. Aternatively, danping can be achieved by neans of
active feedback controls.

To derive appropriate forms for the active feedback controls, we make
use of the partial differential equation (8) linearized about the noninal

mrror surface deformation u, = ﬁd(x) produced by the static actuator
vol tage V which produces the desired u,. Not e t hat ud(x) = ud(x) only at
the nesh points x = >r<nn. Let du =u - Ld, and 8V = V - V. The linearized
equation (8) is given by

2 2 2
8 8u 5] ddu
p(x) 2 z z ax {oij(x) ax ]

at i=1 j=1 i J




MW cv2 ‘ eV 8V (t)

128 | o mn  mn
- Su(t, x ) +"“—rH - ¢ (x),
z Z - u, (x )3 AT mn (D - ud(xmn))?‘} mn

m=1n=1 mn mn

with boundary condition
Su(t,x) = Ofor x esdnandt. =z Q (25)
and initial conditions:

ddu

du(0,x) = u (x) - u (x), ——

(0,x) = ul(x)for x eq. (26)

Consider the total energy functional of the perturbed mrror surface
about u, gi ven by

: __f {p(x)[ 66u] . T[[”gi—l:]2+ [%2]} dx
_ﬁ'[ zz[ (D - ;

mlnl

)“;“3— —12EI (27)

dx mn i Amn

] (Su(t, x) )2¢mn(x) dax.

This energy functional is nonnegative for all &u and 88us/8t in the
Sobo 1 ev  space H:)(Q) (i.e.  the Hilbert space of all real-valued
square integrable functions defined on @ and vani shing on 8Q such t hat
their first-order partial derivatives are also square integrable), if

2
€ Von . 128

(D - ud(xmn))3 AN

mn

form=Il,...,M, n=1,...,N (28)

The tine rate-of-change of &, after integration by parts, and making
use of (24) and boundary condition (25), is given by

72
d&/dt = 36“[2 Z{[ ~- 13“ ][6u(t,x ) - sult,x)]
(D - u (x )) A mn
m=1n=1 mn
eV sV (1)
+ o mn mn ¢ (x) dx (29)

(D u x N*y ™ 1

By requiring that &u(t,x) = 6u(t,xmn) and asu(t,x)/8t = aau(t,lxn(n)/at
for all x eq ,(29) reduces to

M Ny v (t) asu(t,x )
d&/dt = z z ° mn {s[ ¢ de"‘". (30)
m=1n=1 (D B U (x n }
[f we set
_ a3u
6an(t) - *'a/mn hat__(t'xmn) ¢mn(X)’ Wmn> O' (31)

t hen




M N
ag/dt = - z z 5 n %n ¢_(x) dx (68u(t,xmn)/6t)2 < 0. (32

- u (x )2 30 }

mn mn

The control law (31) inplies local rate-feedback at each actuator
| ocation with feedback gain v, only.

I ncorporating the foregoing |ocal rate-feedback with the noninter-

acting controller, the transfer function between uand c is a diagonal
mat ri X H(s) whose di agonal elements have the form

g
h (s) = ! Ci=1, .. L NM (33)
i (s*+ zclwxs + wf)

To achieve zero steady-state error for step actuator conmands, a
proportional -plus-integral mnor-loop controller is introduced.  The
paraneters of the controller and the gain g, are chosen to ensure

stability and satisfactory transient response to step-input comands.
When the noninteracting controls are inplemented by neans of a digital

conputer, processing delays are introduced. These tinme-delays may be
incorporated in hi,(s).

5.2 Global Controller for Wavefront Correction

The initial step in wavefront correction is to estinmate the wavefront
of the incoming light wave reflected fromthe deformable mirror based on
the output of the wavefront sensor. In physical situations, a wavefront
sensor such as the Hartmann-Shack wavefront sensor uses an array of
m cro-lenses, each of which sanples a portion of the incom ng beam and
focuses light onto a detector consisting of a CCD canmera or a lateral
field-effect photodiode array.

Let Q be a bounded open connected subset of R corresponding to the
effective spatial donain of the wavefront sensor. W introduce a nesh on
Q V\/nose mesh points are denoted by X = (xlm,xzn), m=1,. ..,AM; n =
1, N At each nmesh point x S 1ntroduce a patch Q:“, a bounded open

subset of 2, representing the effective aperture of the (m,n)-th |enslet

cont ai ni ng >A<mn as an interior point. Let ¥ = ¥(t,x) denote the wavefront

of the incomng wave reflected from the defornmable mrror and inpinging
onto the wavefront sensor. The local gradient or angular tilt in the
wavefront averaged over the aperture of the (m,n)-th lenslet is given by

4 v GO, x) dx = £ (x - x° ), (34)
o Jg™ me "
S

ve(t, )|

wher e wmn is a given spatial weighting function associated with the
(m,n)-th lenslet; f is the focal length of the 1lenslet; x“mn is the

nom nal position of the focal spot for a collinmated beam and x is the

position of the focal spot for the incoming beam Thus, the angular tilt

in the wavefront can be estimted by measuring the deviations (x - x°).
mn

From the local gradient data, it is possible to obtain an estinate of the

10



wavefront vy = \IJ(L,xA) [12]. For wavefront sensors with circular apertures,

it is advantageous to express ¥ in terms of Zernike pol ynom als. By
conparing ¥ with a reference wavefront ¥ e obtain the wavefront

error &v = \|¥ - ¥. In order to generate the mrror shape correction
command from &¥, it is necessary to map the wavefront sensor domain QS
onto the mirror donmain Q. Let this mapping be a diffeonorphism S from Q
onto Q. Then the nmirror shape correction command &c i s obtai ned by
eval uating &C(t,x) A 6\If(t,s’1x) at all the actuator |ocations x in Q.

Again, due to the presence of processing delays in the wmnvefront
estimator, a dynami c conpensator may be incorporated in the global shape
controller to ensure overall system stability.

6. PHYSI CAL | MPLEMENTATI ON

In the physical inplenmentation of the proposed control system it is
desirable to integrate as much as possible the electronic circuitry of
the controllers with the mirror assenbly. Due to the mnute capacitances
associated with the actuators, it is clear that the actuator drivers
consi sting of operational anmplifiers nust be located in the immediate
vicinities of the actuators.

To inplenent the rate-feedback control given by (31) for danping,
consider a parallel-plate capacitor driven by an operational anplifier as
shown in Fig.5. Assume that the distance A between the capacitor plates
is time varying so that the capacitance C(t) = e A/A(L), where A 1s the

area of each plate. Thus, we have

dv(t) ac(t) _ .

C(t)_af— + v(t) 3E = i(t), (35)
where i is the current flowing to the capacitor. Using the expression for
C(t), (35) can be rewitten as

ATL) dt A(t) dt ’

Now, if the voltage v(t) is held at a constant val ue v then the plate
velocity is related to i(t) by

aa(t) | F()A(L)? .
dt c:OAV0 (37)

Thus , rate-feedback can be introduced by sensing the current i(t)
through a resistor in series with the capacitor as shown in Fig.5. The
current-sensing resistor can be attached directly to the bottom plate,

The proportional -plus-integral mnor-loop controller can also be
realized using operational anplifiers which can be integrated with the
mrror assenmbly. Since the noninteracting controller requires algebraic
mani pul ations, an external digital conmputer is needed for its
i mpl ement ati on. However, it is possible to integrate this controller with

the mirror assenbly when single-chip specialized conputers becone
avai | abl e.

Final ly, the wavefront estimator and the global mrror shape

11



controller require a digital conputer with sufficiently high speecd so
that the processing tinme delay will not. be detrimental to the performance
of the overall system Mst likely, these conponents cannot be integrated
with the nmirror assenbly.

To obtain sone information on the orders of nmgnitude of various
system parameters and variables, we consider a 1.7 mm square rectangul ar
mirror with 15 x 15 actuator patches. Each patch is a 25 pm square pixel.
The mirror nenbrane, leaf springs, and supporting posts are micromachined
from single-crystal silicon sheets. Each leaf spring is a 45-pm|ong,
| -pm thick cantilever beam with rectangul ar cross-section (width = 4 pm.
Usin% known_data for single-crystal silicon [133] (Young's modulus E = 1.9
x 10 ‘N/‘cmz, and mass density p = 2.3 gin/e¢m”), the electrostatic and
spring forces associated with a single actuator can be conputed from (6)
and (7):

2

F o8¢ a=27669 x10'(v/(D - wI® N (38)

e
r 4

S

f A= 8340 x10°UN (39)

where V is the actuator voltage, Dis in neters, and u is the tip
di spl acenent of the leaf spring in nmeters. For a square nmenbrane with
width L under uniformtension T, the upward restoring force on a square
pixel with width £ [ocated at the center of the nenbrane with a downward
di spl acenent u is given approxinately by

F o= 8Teu/L N. (40)

For T=1 Nm and the given dinmensions for the nenbrane and pixels, (40)
becones

F, = 0.11765u N (40" )

For a typical menbrane displacenent u = 0.1 pm, and D = 0.5 um, the
required actuator voltage V can be conputed by bal ancing the upward
restoring forces Fsand FT with the downward force F . The resulting V is

equal to 0.8248 volt which is within the operating range of typical
operational anplifiers.

Using the foregoing mrror parameters, the static actuator voltages
v for attaining a hi-parabolic mirror deformation are given hy

_ 13 2 _ 2 2 2
ud(xl,xz) = 1.9156 x 107(850 xl) (850 xz) pm (41)
The results are shown in Fig.6.

7. CONCLUDI NG REMARKS

In this paper, we have only considered the anal ytical design of a
control system for a mcromachined deformable mrror. The approach is to
introduce first appropriate static feedback controls for noninteracting
actuation. Both local rate-feedback and a mnor-loop controller are
i ntroduced for nodifying the dynanics of the actuators. Then a gl obal
controller is introduced for wavefront correction. Special consideration
is taken to integrate the controllers with the mrror assenbly. O her
inportant factors such as thermal effects on the performance of the
controlled deformable mirror are not studied here. The results pertaining
to the fabrication of the proposed deformable mirror, and the actual




performance of the proposed control system are planned to be reported in
the near future.
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APPENDI X

Explicit expressions for KS and p:“: corresponding to rectangul ar and

circular mrrors are given bel ow
. . . . A
For a rectangular mirror with spatial domain Q = QR‘{(xi,xz) e R:

Ix‘l < £i. i = 1,2} and uniformtension T, the Green's function BK is
given by
© ® 4L ¢ kn(x +€ ) kn(x_+£ )
o | § [ ) ()
s 12 12 nT(k2£2+k’2£) 1 2
k=1 k’=1 1 2
k'n(x’+L ) k'n(x'+L )
, 1 1 2 2
1) 2

Let the actuator patches e be square pixels with width a. Thusmg =
{(X ,, X, € RZ:1 Ix';gnl < A2, Ix'2x2nl < A/ 2}. Assuming that the
actuator weighting function ¢mncorresponds to the characteristic function
of aQ (i.e. ¢ (x) = 1if x e . and ¢mn(x)=0 ot herwi se), t he
coefficients p:“’\ defined by (17) are given by

£ 0 © 4 Lo B |
Plj = 0 Z S‘ 1 2 mk’ nk
™Mo2AD - ux NZEE TP + k%)
d Tmn’l k=1 k’=1 1 2
. kn(xli+81) . kn(x2j+£2)
X sm( >0 ] sﬁn[z—zl‘ (A2)
1 2
wher e xiJ ’(xu,xzj), and
x +0hrs2 k'n(x’'+L ) 28
a .= im sin L dax' = -—Tl— cos(k'nw(x —-é—+ L))
mk’ g AL 221 ) 1 kn{ m 2 1
-lm ¢
, A
- cosl(k n(x1m+ 5 El)) , (A3)
+A/2 kK'n(x'+2 ) 28
2n . 2 2 y 2 ’ __,A
Bnk'= J~x -A/281n(_;___—§2__~—A] dx2 = o {cos(k n(x2n 5+ 82))
X, 2
, A
- coslk n(x2n+ 3?4-22))? (A4)

The Geen's function X for a circular mrror with spatial domain Q =
s

{(r.e), 0 =r =r 0 =6 =2} and uniformtension T is given by
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- Jk(Akk,r)[Jkk (?\kk,r’ Jcos (kO)

xcos(ke' ) + Jkk (A, 1" sin(ke)sin(ko’ )], )

wher e J. denotes the Bessel function of the first kind of order k, and
(,.r)is k'-th zero of Jk“

Let the actuator patches an be fan-shaped pixels with radial length A
and aperture angle ep as shown in Fig.3. Thus o ={(e,r): le- 0| <

0 /2, Ir - ri< A/2}. Inthis case, the coefficients prinf] defined by (17)
wth ¢ . being the characteristic function of Q are gi ven by
m m

13 & i %2 2
p = JA r)
mn . 2 L 2 2 "k kk' )
2(D ud(xmn)) et k,___11tTr0[Jk” (Akk,ro)]
X [ocmk,cos(kei) + Bnk,sin(ket )], (A6)
wher e
. emk’+ 6 s2 ot Ar2
— P Y » y y
s = {L, o cos(k’0’ ) do } {f \ T O, r) 1 dr ; (A?)
nk’ p rm— /2
~ € + 0,2 e Al2
B, - »{I ’ sin(k’ €’) do’ {I Jo O r) gy (A8)
nk enk._ 0{32 } rn- A2 Kk Kk r'dr }
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256 X 256 "plxels”

J “See-through™ vlew of 100+ “plxels, u alnca —
i ; reveallng ‘the repetitive, tile-Iike
Top view of deformable mirror assembly geometrs of the ni’!rror a'ssembly Magnlifled view of several pixels showing

the overlapping ‘ Cross-and-post pattern
of the actuator / mirror support structure

Fig. 1 Top view of the deformable mrror.




Stdo view Of upper wafer

thin momlbrane 7
™~ post
" —

Conductive pads (see below)

= C T I )| [ ) I )] L

—_ )L ( B} ) (

four blades of tha crosses serve as baf springs

Side view of the lower wafer

(- ) (

T
two conductive pads form an air-spared capacitor

Fig. 2 Side view of’ the deformable mrror.
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Fig.3 Typical meshes and patches for rectangular and circul ar
Mrrors.
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Fig.6a Desired hi-parabolic defornation u, for a 1.7 mm square

mirror with 15 x 15 actuators.

. (M ni mum deformation at
mrror center = 0.1 pm )
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Fig.6b Required static actuator voltages V., for hi-parabolic

mirror deformation given in Fig.6a. (Maximum voltage at
mirror center =0.8248 volt.)




